Search results
Results from the WOW.Com Content Network
The function T(h, a) gives the probability of the event (X > h and 0 < Y < aX) where X and Y are independent standard normal random variables.. This function can be used to calculate bivariate normal distribution probabilities [2] [3] and, from there, in the calculation of multivariate normal distribution probabilities. [4]
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
When only the equality of the two groups means is in question (i.e. whether μ 1 = μ 2), the studentized range distribution is similar to the Student's t distribution, differing only in that the first takes into account the number of means under consideration, and the critical value is adjusted accordingly. The more means under consideration ...
In probability and statistics, the PERT distributions are a family of continuous probability distributions defined by the minimum (a), most likely (b) and maximum (c) values that a variable can take. It is a transformation of the four-parameter beta distribution with an additional assumption that its expected value is
The above eight rules apply to a chart of a variable value. A second chart, the moving range chart, can also be used but only with rules 1, 2, 3 and 4. Such a chart plots a graph of the maximum value - minimum value of N adjacent points against the time sample of the range.
Value Accuracy Number of elements 142 exact Mean of x: 54.26 to 2 decimal places Sample variance of x: s 2 x: 16.76 to 2 decimal places Mean of y: 47.83 to 2 decimal places Sample variance of y: s 2 y: 26.93 to 2 decimal places Correlation between x and y: −0.06 to 3 decimal places Linear regression line y = 53 − 0.1x: to 0 and 1 decimal ...
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities.It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level.