enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    In plants, algae, and cyanobacteria, photosynthesis releases oxygen. This oxygenic photosynthesis is by far the most common type of photosynthesis used by living organisms. Some shade-loving plants (sciophytes) produce such low levels of oxygen during photosynthesis that they use all of it themselves instead of releasing it to the atmosphere. [12]

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Earth's primordial atmosphere was anoxic. Organisms like cyanobacteria produced our present-day oxygen-containing atmosphere. The other two major groups of photosynthetic bacteria, purple bacteria and green sulfur bacteria, contain only a single photosystem and do not produce oxygen.

  4. Leghemoglobin - Wikipedia

    en.wikipedia.org/wiki/Leghemoglobin

    Leghemoglobin (also leghaemoglobin or legoglobin) is an oxygen-carrying phytoglobin found in the nitrogen-fixing root nodules of leguminous plants. It is produced by these plants in response to the roots being colonized by nitrogen-fixing bacteria, termed rhizobia, as part of the symbiotic interaction between plant and bacterium: roots not colonized by Rhizobium do not synthesise leghemoglobin.

  5. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    In intense light, plants use various mechanisms to prevent damage to their photosystems. They are able to release some light energy as heat, but the excess light can also produce reactive oxygen species. While some of these can be detoxified by antioxidants, the remaining oxygen species will be detrimental to the photosystems of the plant. More ...

  6. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    The oxygen-evolving complex is the site of water oxidation. It is a metallo-oxo cluster comprising four manganese ions (in oxidation states ranging from +3 to +4) [ 6 ] and one divalent calcium ion. When it oxidizes water, producing oxygen gas and protons, it sequentially delivers the four electrons from water to a tyrosine (D1-Y161) sidechain ...

  7. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    C4 plants use a modified Calvin cycle in which they separate Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) from atmospheric oxygen, fixing carbon in their mesophyll cells and using oxaloacetate and malate to ferry the fixed carbon to RuBisCO and the rest of the Calvin cycle enzymes isolated in the bundle-sheath cells.

  8. Plant physiology - Wikipedia

    en.wikipedia.org/wiki/Plant_physiology

    Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. [1]A germination rate experiment. Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed ...

  9. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin.