Search results
Results from the WOW.Com Content Network
At equilibrium, the rate of transfer of CO 2 from the gas to the liquid phase is equal to the rate from liquid to gas. In this case, the equilibrium concentration of CO 2 in the liquid is given by Henry's law, which states that the solubility of a gas in a liquid is directly proportional to the partial pressure of that gas above the liquid. [1]
Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.
Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities , the most familiar of which are volume , internal energy , and the amount of each constituent particle ( particle numbers ).
Le Châtelier's principle (1884) predicts the behavior of an equilibrium system when changes to its reaction conditions occur. If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will ...
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [12] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
D'Alembert's form of the principle of virtual work states that a system of rigid bodies is in dynamic equilibrium when the virtual work of the sum of the applied forces and the inertial forces is zero for any virtual displacement of the system. Thus, dynamic equilibrium of a system of rigid bodies with generalized coordinates requires ...
In this sense a system in chemical equilibrium is in a stable state. The system at chemical equilibrium will be at a constant temperature, pressure or volume and a composition. It will be insulated from exchange of heat with the surroundings, that is, it is a closed system. A change of temperature, pressure (or volume) constitutes an external ...