Search results
Results from the WOW.Com Content Network
The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...
A first contribution by Frobenius to the theory was to show that - as regards a first, linearly independent solution, which then has the form of an analytical power series multiplied by an arbitrary power r of the independent variable (see below) - the coefficients of the generalized power series obey a recurrence relation, so that they can ...
If is an ordinary point, a fundamental system is formed by the linearly independent formal Frobenius series solutions ,, …,, where [[]] denotes a formal power series in with (), for {, …,}. Due to the reason that the starting exponents are integers, the Frobenius series are power series.
However, as these will turn out to be regular singular points, we will be able to assume a solution on the form of a series. Since this is a second-order differential equation, we must have two linearly independent solutions.
The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation d 2 y d x 2 − k y = 0 {\displaystyle {\frac {d^{2}y}{dx^{2}}}-ky=0} is oscillatory for k <0 and exponential for k >0 ...
The spectral parameter power series (SPPS) method makes use of a generalization of the following fact about homogeneous second-order linear ordinary differential equations: if y is a solution of equation that does not vanish at any point of [a,b], then the function () is a solution of the same equation and is linearly independent from y ...
If , then +, are linearly independent. Since they are solutions to a second order differential equation, every solution (in particular φ {\displaystyle \varphi } ) can be written as a linear combination of them.
The equation has two linearly independent solutions. At each of the three singular points 0, 1, ∞, there are usually two special solutions of the form x s times a holomorphic function of x, where s is one of the two roots of the indicial equation and x is a local variable vanishing at a regular singular point. This gives 3 × 2 = 6 special ...