enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  5. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    An object which tends to float requires a tension restraint force T in order to remain fully submerged. An object which tends to sink will eventually have a normal force of constraint N exerted upon it by the solid floor. The constraint force can be tension in a spring scale measuring its weight in the fluid, and is how apparent weight is defined.

  6. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [3] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  7. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos ⁡ θ {\displaystyle r ...

  8. Eötvös rule - Wikipedia

    en.wikipedia.org/wiki/Eötvös_rule

    This assumption is approximately fulfilled for most known liquids. When plotting the surface tension versus the temperature a fairly straight line can be seen which has a surface tension of zero at the critical temperature. The Eötvös rule also gives a relation of the surface tension behaviour of different liquids in respect to each other: 2.

  9. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    The Laplace pressure is determined from the Young–Laplace equation given as [2] = (+), where and are the principal radii of curvature and (also denoted as ) is the surface tension. Although signs for these values vary, sign convention usually dictates positive curvature when convex and negative when concave.