Search results
Results from the WOW.Com Content Network
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In linguistics, and more precisely in traditional grammar, a cardinal numeral (or cardinal number word) is a part of speech used to count. Examples in English are the words one , two , three , and the compounds three hundred [and] forty-two and nine hundred [and] sixty .
Words in the cardinal category are cardinal numbers, such as the English one, two, three, which name the count of items in a sequence. The multiple category are adverbial numbers, like the English once , twice , thrice , that specify the number of events or instances of otherwise identical or similar items.
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
Cardinal numbers can be defined as follows. Define two sets to have the same size by: there exists a bijection between the two sets (a one-to-one correspondence between the elements). Then a cardinal number is, by definition, a class consisting of all sets of the same size. To have the same size is an equivalence relation, and the cardinal ...
Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V κ satisfies "there is an unbounded class of cardinals satisfying φ".
Notably, is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers: For any natural number , we can consistently assume that =, and moreover it is possible to assume that is as least as large as any cardinal number we like.