Search results
Results from the WOW.Com Content Network
Unfortunately, there is no way to directly observe or calculate the true score, so a variety of methods are used to estimate the reliability of a test. Some examples of the methods to estimate reliability include test-retest reliability, internal consistency reliability, and parallel-test reliability. Each method comes at the problem of ...
For a good test in a population, the post-test probability will be meaningfully higher or lower than the pretest probability. A high likelihood ratio indicates a good test for a population, and a likelihood ratio close to one indicates that a test may not be appropriate for a population.
Failure rate is the frequency with which any system or component fails, expressed in failures per unit of time. It thus depends on the system conditions, time interval, and total number of systems under study. [1]
This ratio can be approximated by, assuming a small AFR, A F R = 8766 M T B F {\displaystyle AFR={8766 \over MTBF}} For example, a common specification for PATA and SATA drives may be an MTBF of 300,000 hours, giving an approximate theoretical 2.92% annualized failure rate i.e. a 2.92% chance that a given drive will fail during a year of use.
For small N, they may differ somewhat. The last row, "Score (logrank) test" is the result for the log-rank test, with p=0.011, the same result as the log-rank test, because the log-rank test is a special case of a Cox PH regression. The Likelihood ratio test has better behavior for small sample sizes, so it is generally preferred.
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
These extensions converge with the family of intra-class correlations (ICCs), so there is a conceptually related way of estimating reliability for each level of measurement from nominal (kappa) to ordinal (ordinal kappa or ICC—stretching assumptions) to interval (ICC, or ordinal kappa—treating the interval scale as ordinal), and ratio (ICCs).