Search results
Results from the WOW.Com Content Network
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
That functionality can roughly be divided into five laboratory processing phases, with numerous software functions falling under each: [2] (1) the reception and log in of a sample and its associated customer data, (2) the assignment, scheduling, and tracking of the sample and the associated analytical workload, (3) the processing and quality ...
™ Wikimedia Foundation, Inc. This file is (or includes) one or more of the official logos or designs used by the Wikimedia Foundation or by one of its projects. Use of the Wikimedia logos and trademarks is subject to the Wikimedia trademark policy and visual identity guidelines, and may require permission.
This pre-aggregated data set becomes the new sample data over which to draw samples with replacement. This method is similar to the Block Bootstrap, but the motivations and definitions of the blocks are very different. Under certain assumptions, the sample distribution should approximate the full bootstrapped scenario.
The data management plan describes the activities to be conducted in the course of processing data. Key topics to cover include the SOPs to be followed, the clinical data management system (CDMS) to be used, description of data sources, data handling processes, data transfer formats and process, and quality control procedure
More recently, a collection of summarisation techniques has been formulated under the heading of exploratory data analysis: an example of such a technique is the box plot. In the business world, descriptive statistics provides a useful summary of many types of data.
Data profiling is the process of examining the data available from an existing information source (e.g. a database or a file) and collecting statistics or informative summaries about that data. [1] The purpose of these statistics may be to: