Search results
Results from the WOW.Com Content Network
Four registers are used to refer to four segments on the 16-bit x86 segmented memory architecture. DS (data segment), CS (code segment), SS (stack segment), and ES (extra segment). Another 16-bit register can act as an offset into a given segment, and so a logical address on this platform is written segment:offset, typically in hexadecimal ...
In both real and protected modes, the system uses 16-bit segment registers to derive the actual memory address. In real mode, the registers CS, DS, SS, and ES point to the currently used program code segment (CS), the current data segment (DS), the current stack segment (SS), and one extra segment determined by
In a system using segmentation, computer memory addresses consist of a segment id and an offset within the segment. [3] A hardware memory management unit (MMU) is responsible for translating the segment and offset into a physical address, and for performing checks to make sure the translation can be done and that the reference to that segment and offset is permitted.
In memory addressing for Intel x86 computer architectures, segment descriptors are a part of the segmentation unit, used for translating a logical address to a linear address. Segment descriptors describe the memory segment referred to in the logical address. [1] The segment descriptor (8 bytes long in 80286 and later) contains the following ...
The term "segment" comes from the memory segment, which is a historical approach to memory management that has been succeeded by paging.When a program is stored in an object file, the code segment is a part of this file; when the loader places a program into memory so that it may be executed, various memory regions are allocated (in particular, as pages), corresponding to both the segments in ...
The Global Descriptor Table (GDT) is a data structure used by Intel x86-family processors starting with the 80286 in order to define the characteristics of the various memory areas used during program execution, including the base address, the size, and access privileges like executability and writability.
The CPU in modern computer hardware performs reads and writes to memory most efficiently when the data is naturally aligned, which generally means that the data's memory address is a multiple of the data size. For instance, in a 32-bit architecture, the data may be aligned if the data is stored in four consecutive bytes and the first byte lies ...
The mode gets its name from the fact that addresses in real mode always correspond to real locations in memory. Real mode is characterized by a 20-bit segmented memory address space (giving 1 MB of addressable memory) and unlimited direct software access to all addressable memory, I/O addresses and peripheral hardware. Real mode provides no ...