Search results
Results from the WOW.Com Content Network
The enthalpy of condensation (or heat of condensation) is by definition equal to the enthalpy of vaporization with the opposite sign: enthalpy changes of vaporization are always positive (heat is absorbed by the substance), whereas enthalpy changes of condensation are always negative (heat is released by the substance).
Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. Latent heat can be understood as hidden energy which is supplied or extracted to change the state ...
Examples: heat of vaporization or heat of fusion). For hydrogen, the difference is much more significant as it includes the sensible heat of water vapor between 150 °C and 100 °C, the latent heat of condensation at 100 °C, and the sensible heat of the condensed water between 100 °C and 25 °C.
Condensation on a window during a rain shower. Condensation in building construction is an unwanted phenomenon as it may cause dampness, mold health issues, wood rot, corrosion, weakening of mortar and masonry walls, and energy penalties due to increased heat transfer. To alleviate these issues, the indoor air humidity needs to be lowered, or ...
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
During condensation, the latent heat of vaporization must be released. The amount of heat is the same as that absorbed during vaporization at the same fluid pressure. [24] There are several types of condensation: Homogeneous condensation, as during the formation of fog. Condensation in direct contact with subcooled liquid.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Heat capacity, c p: 111.46 J/(mol K) [5] Liquid properties Std enthalpy change of formation, Δ f H o liquid: −277.38 kJ/mol Standard molar entropy, S o liquid: 159.9 J/(mol K) Enthalpy of combustion, Δ c H o: −1370.7 kJ/mol Heat capacity, c p: 112.4 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −235.3 kJ/mol ...