enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Chemical_thermodynamics

    In solution chemistry and biochemistry, the Gibbs free energy decrease (∂G/∂ξ, in molar units, denoted cryptically by ΔG) is commonly used as a surrogate for (−T times) the global entropy produced by spontaneous chemical reactions in situations where no work is being done; or at least no "useful" work; i.e., other than perhaps ± P dV.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    This definition of exponentiation with negative exponents is the only one that allows extending the identity + = to negative exponents (consider the case =). The same definition applies to invertible elements in a multiplicative monoid , that is, an algebraic structure , with an associative multiplication and a multiplicative identity denoted 1 ...

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    Rate equation. In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only ...

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships ...

  6. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The solution (g, h, k) is another solution to the original equation, but smaller (0 < g < d < x). Applying the same procedure to (g, h, k) would produce another solution, still smaller, and so on. But this is impossible, since natural numbers cannot be shrunk indefinitely. Therefore, the original solution (x, y, z) was impossible.

  7. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to a power of the change, independent of the initial size of those quantities: one quantity varies as a power of another. For instance, considering the area of a ...

  8. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  9. Chemical law - Wikipedia

    en.wikipedia.org/wiki/Chemical_law

    Chemical laws are those laws of nature relevant to chemistry. The most fundamental concept in chemistry is the law of conservation of mass, which states that there is no detectable change in the quantity of matter during an ordinary chemical reaction. Modern physics shows that it is actually energy that is conserved, and that energy and mass ...