Search results
Results from the WOW.Com Content Network
Computing the convex hull means that a non-ambiguous and efficient representation of the required convex shape is constructed. The complexity of the corresponding algorithms is usually estimated in terms of n, the number of input points, and sometimes also in terms of h, the number of points on the convex hull.
In geometry, the convex hull, convex envelope or convex closure [1] of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space , or equivalently as the set of all convex combinations of points in the subset.
Convex hull, alpha shape and minimal spanning tree of a bivariate data set. In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points.
For the sake of simplicity, the description below assumes that the points are in general position, i.e., no three points are collinear.The algorithm may be easily modified to deal with collinearity, including the choice whether it should report only extreme points (vertices of the convex hull) or all points that lie on the convex hull [citation needed].
The convex hull of a simple polygon (blue). Its four pockets are shown in yellow; the whole region shaded in either color is the convex hull. In discrete geometry and computational geometry, the convex hull of a simple polygon is the polygon of minimum perimeter that contains a given simple polygon.
Convex and Concave - a print by Escher in which many of the structure's features can be seen as both convex shapes and concave impressions. Convex body - a compact convex set in a Euclidean space whose interior is non-empty. Convex conjugate - a dual of a real functional in a vector space. Can be interpreted as an encoding of the convex hull of ...
The convex layers of a point set and their intersection with a halfplane. In computational geometry, the convex layers of a set of points in the Euclidean plane are a sequence of nested convex polygons having the points as their vertices. The outermost one is the convex hull of the points and the rest are formed in the same way recursively.
A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.