Search results
Results from the WOW.Com Content Network
The Performance Test Standard PTC 19.1-2005 "Test Uncertainty", published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.
In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]
If the instrument has a needle which points to a scale graduated in steps of 0.1 units, then depending on the design of the instrument, it is usually possible to estimate tenths between the successive marks on the scale, so it should be possible to read off the result to an accuracy of about 0.01 units.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Subsequent data and analysis indicated that the apparent peak resulted from random noise. The name is a pun on upsilon, the proposed name for the new particle and Leon M. Lederman, the principal investigator. The illusory particle is unrelated to the Upsilon meson, discovered in 1977 by the same group. [14] Cold fusion (1989)
In statistical hypothesis testing, there are various notions of so-called type III errors (or errors of the third kind), and sometimes type IV errors or higher, by analogy with the type I and type II errors of Jerzy Neyman and Egon Pearson. Fundamentally, type III errors occur when researchers provide the right answer to the wrong question, i.e ...
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...