enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fructose-bisphosphate aldolase - Wikipedia

    en.wikipedia.org/wiki/Fructose-bisphosphate_aldolase

    Some defects in aldolase B cause hereditary fructose intolerance. The metabolism of free fructose in liver exploits the ability of aldolase B to use fructose 1-phosphate as a substrate. [6] Archaeal fructose-bisphosphate aldolase/phosphatase is presumably involved in gluconeogenesis because its product is fructose 6-phosphate. [7]

  3. Aldolase B - Wikipedia

    en.wikipedia.org/wiki/Aldolase_B

    Aldolase B is a homotetrameric enzyme, composed of four subunits with molecular weights of 36 kDa with local 222 symmetry. Each subunit has a molecular weight of 36 kDa and contains an eight-stranded α/β barrel, which encloses lysine 229 (the Schiff-base forming amino acid that is key for catalysis).

  4. Aldolase A - Wikipedia

    en.wikipedia.org/wiki/Aldolase_A

    Aldolase A (ALDOA, or ALDA), also known as fructose-bisphosphate aldolase, is an enzyme that in humans is encoded by the ALDOA gene on chromosome 16.. The protein encoded by this gene is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP).

  5. Fructose 1,6-bisphosphate - Wikipedia

    en.wikipedia.org/wiki/Fructose_1,6-bisphosphate

    Fructose 1,6-bisphosphate, known in older publications as Harden-Young ester, is fructose sugar phosphorylated on carbons 1 and 6 (i.e., is a fructosephosphate). The β-D-form of this compound is common in cells. [1] Upon entering the cell, most glucose and fructose is converted to fructose 1,6-bisphosphate. [2] [3]

  6. Fructose 1,6-bisphosphatase - Wikipedia

    en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase

    Fructose 1,6-bisphosphate aldolase is another temperature dependent enzyme that plays an important role in the regulation of glycolysis and gluconeogenesis during hibernation. [14] Its main role is in glycolysis instead of gluconeogenesis, but its substrate is the same as FBPase's, so its activity affects that of FBPase in gluconeogenesis.

  7. Lyase - Wikipedia

    en.wikipedia.org/wiki/Lyase

    Common names include decarboxylase, dehydratase, aldolase, etc. When the product is more important, synthase may be used in the name, e.g. phosphosulfolactate synthase (EC 4.4.1.19, Michael addition of sulfite to phosphoenolpyruvate). A combination of both an elimination and a Michael addition is seen in O-succinylhomoserine (thiol)-lyase (MetY ...

  8. Fructosephosphates - Wikipedia

    en.wikipedia.org/wiki/Fructosephosphates

    Fructosephosphates are sugar phosphates based upon fructose, and are common in the biochemistry of cells. [1] Fructosephosphates play integral roles in many metabolic pathways, particularly glycolysis, gluconeogenesis and the pentose phosphate pathway. The major biologically active fructosephosphates are: Fructose 1-phosphate; Fructose 2-phosphate

  9. Fructose 1-phosphate - Wikipedia

    en.wikipedia.org/wiki/Fructose_1-phosphate

    Fructose-1-phosphate is a derivative of fructose. It is generated mainly by hepatic fructokinase but is also generated in smaller amounts in the small intestinal mucosa and proximal epithelium of the renal tubule. [1] It is an important intermediate of glucose metabolism.