Search results
Results from the WOW.Com Content Network
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
Therefore, the result ranges of the inverse functions are proper (i.e. strict) subsets of the domains of the original functions. For example, using function in the sense of multivalued functions, just as the square root function = could be defined from =, the function = is defined so that =.
Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.
The idea to combine the bisection method with the secant method goes back to Dekker (1969).. Suppose that we want to solve the equation f(x) = 0.As with the bisection method, we need to initialize Dekker's method with two points, say a 0 and b 0, such that f(a 0) and f(b 0) have opposite signs.
The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...
Brent's method — combines bisection method, secant method and inverse quadratic interpolation Ridders' method — fits a linear function times an exponential to last two iterates and their midpoint Halley's method — uses f , f ' and f ''; achieves the cubic convergence
For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...