enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    According to Newton's second law, an external force leads to a change in velocity (acceleration) of a body. Analogously an external torque means a change in angular velocity resulting in an angular acceleration. The inertia relating to rotation depends not only on the mass of a body but also on its spatial distribution.

  3. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    F = total force acting on the center of mass m = mass of the body I 3 = the 3×3 identity matrix a cm = acceleration of the center of mass v cm = velocity of the center of mass τ = total torque acting about the center of mass I cm = moment of inertia about the center of mass ω = angular velocity of the body α = angular acceleration of the body

  4. Thomas precession - Wikipedia

    en.wikipedia.org/wiki/Thomas_precession

    The spin 4-vector is orthogonal to the velocity 4-vector. Fermi-Walker transport preserves this relation. One finds that the dot product of the acceleration 4-vector with the spin 4-vector varies sinusoidally with time with an angular frequency γω, where ω is the angular frequency of the circular motion and γ=1/√(1-v^2/c^2), the Lorentz ...

  5. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...

  6. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  8. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  9. Specific angular momentum - Wikipedia

    en.wikipedia.org/wiki/Specific_angular_momentum

    Using the velocity vector in place of the rate of change of position, and for the specific angular momentum: = is constant. This is different from the normal construction of momentum, r × p {\displaystyle \mathbf {r} \times \mathbf {p} } , because it does not include the mass of the object in question.