Search results
Results from the WOW.Com Content Network
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry , no Euclidean triangle can have more than one obtuse angle.
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
This is an SVG drawing of a scalene triangle with sides and angles marked, last of six-image series with Image:Triangle-acute.svg, Image:Triangle-obtuse.svg, Image:Triangle-right.svg, Image:Triangle-isosceles.svg, and Image:Triangle-equilateral.svg. All files are the same size, 505 by 440.
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
Euler diagram showing the classifications of triangles (isosceles, scalene, right, oblique, etc.) French Diagramme d'Euler illustrant la classification des triangles (isocèle, droit, aigu, etc.)
Triangle – 3 sides Acute triangle; Equilateral triangle; Heptagonal triangle; Isosceles triangle. Golden Triangle; Obtuse triangle; Rational triangle; Heronian triangle. Pythagorean triangle; Isosceles heronian triangle; Primitive Heronian triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle ...
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13