Search results
Results from the WOW.Com Content Network
RNA folding problem: Is it possible to accurately predict the secondary, tertiary and quaternary structure of a polyribonucleic acid sequence based on its sequence and environment? Protein design : Is it possible to design highly active enzymes de novo for any desired reaction?
Internal rate of return (IRR) is a method of calculating an investment's rate of return. The term internal refers to the fact that the calculation excludes external factors, such as the risk-free rate, inflation, the cost of capital, or financial risk. The method may be applied either ex-post or ex-ante. Applied ex-ante, the IRR is an estimate ...
The modified internal rate of return (MIRR) is a financial measure of an investment's attractiveness. [ 1 ] [ 2 ] It is used in capital budgeting to rank alternative investments of unequal size. As the name implies, MIRR is a modification of the internal rate of return (IRR) and as such aims to resolve some problems with the IRR.
The closer this value is to 1.0, the better the data fit to a hyperplane representing the relationship between the response variable and a set of covariate variables. A value equal to 1.0 indicates all data fit perfectly within the hyperplane. λ: Gas mean free path (cm) D 50: Mass-median-diameter (MMD). The log-normal distribution mass median ...
The public market equivalent (PME) is a collection of performance measures developed to assess private equity funds and to overcome the limitations of the internal rate of return and multiple on invested capital measurements. While the calculations differ, they all attempt to measure the return from deploying a private equity fund's cash flows ...
Like the modified Dietz method, the simple Dietz method is based on the assumption of a simple rate of return principle, unlike the internal rate of return method, which applies a compounding principle. Also like the modified Dietz method, it is a money-weighted returns method (as opposed to a time-weighted returns method).
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.