Search results
Results from the WOW.Com Content Network
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Degradation of prokaryotic mRNAs is accelerated by loss of coupled translation due to increased availability of target sites of RNase E. [6] It has also been suggested that coupling of transcription with translation is an important mechanism of preventing formation of deleterious R-loops . [ 7 ]
Among the many-celled groups are animals and plants. The number of cells in these groups vary with species; it has been estimated that the human body contains around 37 trillion (3.72×10 13) cells, [7] and more recent studies put this number at around 30 trillion (~36 trillion cells in the male, ~28 trillion in the female). [8]
Direct regulation of translation is less prevalent than control of transcription or mRNA stability but is occasionally used. [109] Inhibition of protein translation is a major target for toxins and antibiotics, so they can kill a cell by overriding its normal gene expression control. [110]
Prokaryotic translation may refer to: Bacterial translation , the process by which messenger RNA is translated into proteins in bacteria Archaeal translation , the process by which messenger RNA is translated into proteins in archaea
The prokaryotic initiation factors IF1 and IF2 are also homologs of the eukaryotic initiation factors eIF1A and eIF5B. IF1 and eIF1A, both containing an OB-fold , bind to the A site and assist in the assembly of initiation complexes at the start codon .
Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. [1] Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.
A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide translation. Translation initiation is essential to protein synthesis and regulates mRNA translation fidelity and efficiency in bacteria. [1] The 30S ribosomal subunit, initiator tRNA, and mRNA form an initiation complex for elongation. [2]