Search results
Results from the WOW.Com Content Network
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the σ-algebra) and the method that is used for measuring (the measure). One important example of a measure space is a probability space.
A simple example is a volume (how big an object occupies a space) as a measure. In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and ...
The term Borel space is used for different types of measurable spaces. It can refer to any measurable space, so it is a synonym for a measurable space as defined above [1] a measurable space that is Borel isomorphic to a measurable subset of the real numbers (again with the Borel -algebra) [3]
Formally, a metric measure space is a metric space equipped with a Borel regular measure such that every ball has positive measure. [21] For example Euclidean spaces of dimension n, and more generally n-dimensional Riemannian manifolds, naturally have the structure of a metric measure space, equipped with the Lebesgue measure.
Given a (possibly incomplete) measure space (X, Σ, μ), there is an extension (X, Σ 0, μ 0) of this measure space that is complete. [3] The smallest such extension (i.e. the smallest σ-algebra Σ 0) is called the completion of the measure space. The completion can be constructed as follows:
In short, a probability space is a measure space such that the measure of the whole space is equal to one. The expanded definition is the following: a probability space is a triple (,,) consisting of: the sample space – an arbitrary non-empty set,
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume.
Improving measurements were continually checked and cross-checked by means of improved understanding of the laws of celestial mechanics, which govern the motions of objects in space. The expected positions and distances of objects at an established time are calculated (in au) from these laws, and assembled into a collection of data called an ...