Search results
Results from the WOW.Com Content Network
There are two written papers, each comprising half of the weightage towards the subject. Each paper is 2 hours 15 minutes long and worth 90 marks. Paper 1 has 12 to 14 questions, while Paper 2 has 9 to 11 questions. Generally, Paper 2 would have a graph plotting question based on linear law. It was originated in the year 2003 [3]
In Fluorescence lifetime and spectral imaging, phasor can be used to visualize the spectra and decay curves. [1] [2] In this method the Fourier transformation of the spectrum or decay curve is calculated and the resulted complex number is plotted on a 2D plot where the X-axis represents the real component and the Y-axis represents the imaginary ...
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.
The Zentralblatt MATH page on the Mathematics Subject Classification. MSC2020 can be seen here. Mathematics Subject Classification 2010 – the site where the MSC2010 revision was carried out publicly in an MSCwiki. A view of the whole scheme and the changes made from MSC2000, as well as PDF files of the MSC and ancillary documents are there.
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
X-ray absorption (left) and differential phase-contrast (right) image of an in-ear headphone obtained with a grating interferometer at 60kVp. Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.
For examinations up to and including the 2018 papers, the specification for STEP 1 and STEP 2 was based on Mathematics A Level content while the syllabus for STEP 3 was based on Further Mathematics A Level. The questions on STEP 2 and 3 were about the same difficulty. Both STEP 2 and STEP 3 are harder than STEP 1. [6]
Super-resolution imaging (SR) is a class of techniques that improve the resolution of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital imaging sensors is enhanced.