enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    For example, when someone says that the "entropy" of the English language is about 1 bit per character, they are actually modeling the English language as a stochastic process and talking about its entropy rate. Shannon himself used the term in this way.

  3. Entropy estimation - Wikipedia

    en.wikipedia.org/wiki/Entropy_estimation

    This is a very rough estimate with high variance, but can be improved, for example by thinking about the space between a given value and the one m away from it, where m is some fixed number. [ 7 ] The probability density estimated in this way can then be used to calculate the entropy estimate, in a similar way to that given above for the ...

  4. Recurrence quantification analysis - Wikipedia

    en.wikipedia.org/wiki/Recurrence_quantification...

    reflects the complexity of the deterministic structure in the system. However, this entropy depends sensitively on the bin number and, thus, may differ for different realisations of the same process, as well as for different data preparations. The last measure of the RQA quantifies the thinning-out of the recurrence plot.

  5. Binary entropy function - Wikipedia

    en.wikipedia.org/wiki/Binary_entropy_function

    Binary entropy ⁡ is a special case of (), the entropy function. H ⁡ ( p ) {\displaystyle \operatorname {H} (p)} is distinguished from the entropy function H ( X ) {\displaystyle \mathrm {H} (X)} in that the former takes a single real number as a parameter whereas the latter takes a distribution or random variable as a parameter.

  6. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  7. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  8. Information content - Wikipedia

    en.wikipedia.org/wiki/Information_content

    For a given probability space, the measurement of rarer events are intuitively more "surprising", and yield more information content, than more common values. Thus, self-information is a strictly decreasing monotonic function of the probability, or sometimes called an "antitonic" function.

  9. Redundancy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Redundancy_(information...

    in the limit, as n goes to infinity, of the joint entropy of the first n symbols divided by n. It is common in information theory to speak of the "rate" or "entropy" of a language. This is appropriate, for example, when the source of information is English prose.