enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger. For a given heat exchanger with constant area and heat transfer coefficient, the larger the LMTD, the more heat is transferred. The use of the LMTD arises straightforwardly from the analysis of a heat ...

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  4. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient, U. In that case, the heat transfer rate is: ˙ = where (in SI units):

  5. Plate heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Plate_heat_exchanger

    The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]

  6. Thermal boundary layer thickness and shape - Wikipedia

    en.wikipedia.org/wiki/Thermal_boundary_layer...

    The temperature profile is the temperature as a function of at a fixed position. For laminar flow over a flat plate at zero incidence, the thermal boundary layer thickness is given by: [ 2 ] δ T = δ v P r − 1 / 3 {\displaystyle \delta _{T}=\delta _{v}\mathrm {Pr} ^{-1/3}}

  7. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.

  8. Talk:Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Talk:Logarithmic_mean...

    Ind. Eng. Chem., 1933, 25 (8), pp 873–877) and summarise amongst other things the assumptions, to quote Colburn: "Assumptions: (1) The over-all heat transfer coefficient, U, is a linear function of temperature t; i. e., U = a (1 + bt), where a and b are constants, and t is the temperature of one of the fluid streams. The specific heats are ...

  9. Pinch analysis - Wikipedia

    en.wikipedia.org/wiki/Pinch_analysis

    Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.