enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]

  3. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  4. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...

  5. Rayleigh–Plesset equation - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Plesset_equation

    The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.

  6. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    Enthalpy-Entropy diagram of stagnation state. In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity.

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A series of steel ball bearings of different diameters are normally used in the classic experiment to improve the accuracy of the calculation.

  8. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by

  9. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    A vortex street around a cylinder. This can occur around cylinders and spheres, for any fluid, cylinder size and fluid speed, provided that the flow has a Reynolds number in the range ~40 to ~1000. [1] In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [2]