Search results
Results from the WOW.Com Content Network
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:
The three dimensions of space afford 14 distinct Bravais lattices describing the translational symmetry. All crystalline materials recognized today, not including quasicrystals, fit in one of these arrangements. The fourteen three-dimensional lattices, classified by lattice system, are shown above.
He was the first to use the terms lattice (réseau) and unit cell (maille). He stated that the orientation of the molecular axes in a substance is constant, which implies symmetry of translation (a defining feature of a lattice), and that the external symmetry of a crystal reflects its inner symmetry, namely the symmetry of the constituent ...
The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 2 1 is a 180° (twofold) rotation followed by a translation of 1 / 2 of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of 1 / 3 of ...
A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices.
The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure.Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...