Search results
Results from the WOW.Com Content Network
If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation. For a typical second-order reaction with rate ...
Thus the product formation rate depends on the enzyme concentration as well as on the substrate concentration, the equation resembles a bimolecular reaction with a corresponding pseudo-second order rate constant /. This constant is a measure of catalytic efficiency.
The Michaelis constant has units of concentration, and for a given reaction is equal to the concentration of substrate at which the reaction rate is half of . [6] Biochemical reactions involving a single substrate are often assumed to follow Michaelis–Menten kinetics, without regard to the model's underlying assumptions.
In a chemical reaction, the half-life of a species is the time it takes for the concentration of that substance to fall to half of its initial value. In a first-order reaction the half-life of the reactant is ln(2)/λ, where λ (also denoted as k) is the reaction rate constant.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Pages for logged out editors learn more. Contributions; Talk; Pseudo first order reaction
Although the net formula for decomposition or isomerization appears to be unimolecular and suggests first-order kinetics in the reactant, the Lindemann mechanism shows that the unimolecular reaction step is preceded by a bimolecular activation step so that the kinetics may actually be second-order in certain cases. [7]
Unlike more common pseudo-first-order analysis, in which an overwhelming excess of one or more reagents is used relative to a species of interest, RPKA probes reactions at synthetically relevant conditions (i.e. with concentrations and reagent ratios resembling those used in the reaction when not exploring the rate law.)