Search results
Results from the WOW.Com Content Network
t 3 = 6 is the modular multiplicative inverse of 5 × 7 (mod 11). Thus, X = 3 × (7 × 11) × 4 + 6 × (5 × 11) × 4 + 6 × (5 × 7) × 6 = 3504. and in its unique reduced form X ≡ 3504 ≡ 39 (mod 385) since 385 is the LCM of 5,7 and 11. Also, the modular multiplicative inverse figures prominently in the definition of the Kloosterman sum.
Let R be a ring. R is a free module of rank one over itself (either as a left or right module); any unit element is a basis. More generally, If R is commutative, a nonzero ideal I of R is free if and only if it is a principal ideal generated by a nonzerodivisor, with a generator being a basis. [3]
When R is a power of a small positive integer b, N′ can be computed by Hensel's lemma: The inverse of N modulo b is computed by a naïve algorithm (for instance, if b = 2 then the inverse is 1), and Hensel's lemma is used repeatedly to find the inverse modulo higher and higher powers of b, stopping when the inverse modulo R is known; N′ is ...
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
) To prove that the backward direction + + is invertible with inverse given as above) is true, we verify the properties of the inverse. A matrix Y {\displaystyle Y} (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix X {\displaystyle X} (in this case A + u v T {\displaystyle A+uv^{\textsf {T}}} ) if ...
In the construction of the tensor product over a commutative ring R, the R-module structure can be built in from the start by forming the quotient of a free R-module by the submodule generated by the elements given above for the general construction, augmented by the elements r ⋅ (m ∗ n) − m ∗ (r ⋅ n).
Given a ring homomorphism R → S of commutative rings and an S-module M, an R-linear map θ: S → M is called a derivation if for any f, g in S, θ(f g) = f θ(g) + θ(f) g. If S, T are unital associative algebras over a ring R, then an algebra homomorphism from S to T is a ring homomorphism that is also an R-module homomorphism.
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.