enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The centroid of an object ... The points on the curve ... a = the radius of the base circle h = the height of the semi-ellipsoid from the base cicle's center to the ...

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Catenary - Wikipedia

    en.wikipedia.org/wiki/Catenary

    A chain hanging from points forms a catenary. The silk on a spider's web forming multiple elastic catenaries.. In physics and geometry, a catenary (US: / ˈ k æ t ən ɛr i / KAT-ən-err-ee, UK: / k ə ˈ t iː n ər i / kə-TEE-nər-ee) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Brachistochrone curve - Wikipedia

    en.wikipedia.org/wiki/Brachistochrone_curve

    The curve is independent of both the mass of the test body and the local strength of gravity. Only a parameter is chosen so that the curve fits the starting point A and the ending point B. [5] If the body is given an initial velocity at A, or if friction is taken into account, then the curve that minimizes time differs from the tautochrone curve.

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...

  9. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.

  1. Related searches how to find radius of a curve formula given mass and height and length of object

    radius of curvature calculatorr radius of curvature
    radius of curvature chartradius of curvature scanner