Search results
Results from the WOW.Com Content Network
where L is the perimeter of the lemniscate of Bernoulli with focal distance c. V = 4 3 π r 3 {\displaystyle V={4 \over 3}\pi r^{3}} where V is the volume of a sphere and r is the radius.
For a lattice L in Euclidean space R n with unit covolume, i.e. vol(R n /L) = 1, let λ 1 (L) denote the least length of a nonzero element of L. Then √γ n n is the maximum of λ 1 (L) over all such lattices L. 1822 to 1901 Hafner–Sarnak–McCurley constant [118]
The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
By making this assumption, g takes the following form: = (i.e., the direction of g is antiparallel to the direction of r, and the magnitude of g depends only on the magnitude, not direction, of r). Plugging this in, and using the fact that ∂ V is a spherical surface with constant r and area 4 π r 2 {\displaystyle 4\pi r^{2}} ,
Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the point opposite C on the circle. Thus the length of CA is s 2n, the length of C′A is c 2n, and C′CA is itself a right triangle on diameter C′C.
This formula is a simplified version of that in section 2.2 of Stansberry et al., 2007, [39] where emissivity and beaming parameter were assumed to equal unity, and was replaced with 4, accounting for the difference between circle and sphere. All parameters mentioned above were taken from the same paper.
F. C. M. Størmer (1896). Two equations are used so that one can check they both give the same result; it is helpful if the equations used to cross-check the result reuse some of the arctangent arguments (note the reuse of 57 and 239 above), so that the process can be simplified by only computing them once, but not all of them, in order to ...