Search results
Results from the WOW.Com Content Network
An infrared spectroscopy correlation table (or table of infrared absorption frequencies) is a list of absorption peaks and frequencies, typically reported in wavenumber, for common types of molecular bonds and functional groups.
A hyperthermophile is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). [ 1 ]
The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance ) on the vertical axis vs. frequency , wavenumber or wavelength on the horizontal ...
The method measures the thermal infrared radiation emitted (as opposed to being transmitted or reflected) from a volume or surface. This method is commonly used to identify the composition of surface by analyzing its spectrum and comparing it to previously measured materials. It is particularly suited to airborne and spaceborne applications.
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
A thermophile is a type of extremophile that thrives at relatively high temperatures, between 41 and 122 °C (106 and 252 °F). [1] [2] Many thermophiles are archaea, though some of them are bacteria and fungi. Thermophilic eubacteria are suggested to have been among the earliest bacteria. [3]
Researchers compressed infrared light to 10% of its wavelength using a thin strontium titanate film, paving the way for advanced infrared imaging.
This places far infrared radiation within the CIE IR-B and IR-C bands. [1] The longer wavelengths of the FIR spectrum overlap with a range known as terahertz radiation. [2] Different sources may use different boundaries to define the far infrared range. For instance, astronomers often define it as wavelengths between 25 μm and 350 μm. [3]