Search results
Results from the WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions, [ 1 ] as both specific entropy and specific volume do not change in second ...
In 1842 Clapeyron published his findings on the "optimal position for the piston at which the various valves should be opened or closed." [1] [4] In 1843, Clapeyron further developed the idea of a reversible process, already suggested by Carnot and made a definitive statement of Carnot's principle, what is now known as the second law of ...
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant , expressed in units of energy per temperature increment per amount of substance , rather than energy per temperature increment per particle .
The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.
He used the now abandoned unit 'Clausius' (symbol: Cl) for entropy. [17] 1 Clausius (Cl) = 1 calorie/degree Celsius (cal/°C) = 4.1868 joules per kelvin (J/K) The landmark 1865 paper in which he introduced the concept of entropy ends with the following summary of the first and second laws of thermodynamics: [4] The energy of the universe is ...
where K 1 and K 2 are the equilibrium constant values obtained at temperatures T 1 and T 2 respectively. However, the precision of Δ r H ⊖ values obtained in this way is highly dependent on the precision of the measured equilibrium constant values.