enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/ClausiusClapeyron_relation

    Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Ehrenfest equations - Wikipedia

    en.wikipedia.org/wiki/Ehrenfest_equations

    Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions, [ 1 ] as both specific entropy and specific volume do not change in second ...

  5. Émile Clapeyron - Wikipedia

    en.wikipedia.org/wiki/Émile_Clapeyron

    In 1842 Clapeyron published his findings on the "optimal position for the piston at which the various valves should be opened or closed." [1] [4] In 1843, Clapeyron further developed the idea of a reversible process, already suggested by Carnot and made a definitive statement of Carnot's principle, what is now known as the second law of ...

  6. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant , expressed in units of energy per temperature increment per amount of substance , rather than energy per temperature increment per particle .

  7. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.

  8. Rudolf Clausius - Wikipedia

    en.wikipedia.org/wiki/Rudolf_Clausius

    He used the now abandoned unit 'Clausius' (symbol: Cl) for entropy. [17] 1 Clausius (Cl) = 1 calorie/degree Celsius (cal/°C) = 4.1868 joules per kelvin (J/K) The landmark 1865 paper in which he introduced the concept of entropy ends with the following summary of the first and second laws of thermodynamics: [4] The energy of the universe is ...

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    where K 1 and K 2 are the equilibrium constant values obtained at temperatures T 1 and T 2 respectively. However, the precision of Δ r H ⊖ values obtained in this way is highly dependent on the precision of the measured equilibrium constant values.