Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Verification and validation of computer simulation models is conducted during the development of a simulation model with the ultimate goal of producing an accurate and credible model. [ 1 ] [ 2 ] "Simulation models are increasingly being used to solve problems and to aid in decision-making.
The Python edition allows calling the NOVAS functions from Python. It is mostly feature complete with respect to the C edition, with a few exceptions, [ 4 ] and shares the C edition's API. The current edition uses Python's foreign function library, ctypes.
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...
User input validation: User input (gathered by any peripheral such as a keyboard, bio-metric sensor, etc.) is validated by checking if the input provided by the software operators or users meets the domain rules and constraints (such as data type, range, and format).
November exports of Italian wine to the U.S. reached a record high in the same month Donald Trump secured his return to the Oval Office.
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.