Search results
Results from the WOW.Com Content Network
An ellipsograph is a trammel of Archimedes intended to draw, cut, or machine ellipses, e.g. in wood or other sheet materials. An ellipsograph has the appropriate instrument (pencil, knife, router, etc.) attached to the rod. Usually the distances a and b are adjustable, so that the size and shape of the ellipse can be varied.
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand (see ellipse).
An ellipse can be drawn (by computer or by hand), if besides the center at least two conjugate points on conjugate diameters are known. In this case either one determines by Rytz's construction the vertices of the ellipse and draws the ellipse with a suitable ellipse compass; or uses an parametric representation for drawing the ellipse.
Draw lines of arbitrary thickness, an algorithm created by Alan Murphy at IBM. [6] Draw multiple kinds curves (circles, ellipses, cubic, quadratic, and rational Bézier curves) and antialiased lines and curves; a set of algorithms by Alois Zingl. [3]
To draw only a certain arc from an angle to an angle , the algorithm needs first to calculate the and coordinates of these end points, where it is necessary to resort to trigonometric or square root computations (see Methods of computing square roots). Then the Bresenham algorithm is run over the complete octant or circle and sets the pixels ...
Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. [1]
The characterization of an ellipse as the locus of points so that sum of the distances to the foci is constant leads to a method of drawing one using two drawing pins, a length of string, and a pencil. In this method, pins are pushed into the paper at two points, which become the ellipse's foci.
The distance estimation can be used for drawing of the boundary of the Mandelbrot set, see the article Julia set. In this approach, pixels that are sufficiently close to M are drawn using a different color. This creates drawings where the thin "filaments" of the Mandelbrot set can be easily seen.