Ad
related to: solve system of equations quizkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.
The concept can also be applied to more general systems of equations, such as systems of polynomial equations or partial differential equations. In the case of the systems of polynomial equations, it may happen that an overdetermined system has a solution, but that no one equation is a consequence of the others and that, when removing any ...
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.
Let R be an effective commutative ring.. There is an algorithm for testing if an element a is a zero divisor: this amounts to solving the linear equation ax = 0.; There is an algorithm for testing if an element a is a unit, and if it is, computing its inverse: this amounts to solving the linear equation ax = 1.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
Systems of linear equations arose in Europe with the introduction in 1637 by René Descartes of coordinates in geometry. In fact, in this new geometry, now called Cartesian geometry, lines and planes are represented by linear equations, and computing their intersections amounts to solving systems of linear equations.
Ad
related to: solve system of equations quizkutasoftware.com has been visited by 10K+ users in the past month