enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular ...

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula. A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠ ⁠ ⁠ ⁠ ⁠ ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, the area ⁠ ⁠ is [1] It is named after first-century engineer Heron of Alexandria (or Hero) who ...

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  5. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.

  7. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Any triangle subdivides its bounding box into the triangle itself and additional right triangles, and the areas of both the bounding box and the right triangles are easy to compute. Combining these area computations gives Pick's formula for triangles, and combining triangles gives Pick's formula for arbitrary polygons. [7] [8] [13]

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of d𝜃 at the centre of the circle), each with an area of ⁠ 1 / 2 ⁠ · r 2 · d𝜃 (derived from the expression for the area of a triangle: ⁠ 1 / 2 ⁠ · a · b · sin𝜃 ...