enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    Sherman–Morrison formula. In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a " rank -1 update" to a matrix whose inverse has previously been computed. [1][2][3] That is, given an invertible matrix and the outer product of vectors and the formula cheaply computes an ...

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Moore–Penrose inverse. In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.

  5. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    The Woodbury matrix identity is [5] where A, U, C and V are conformable matrices: A is n × n, C is k × k, U is n × k, and V is k × n. This can be derived using blockwise matrix inversion. While the identity is primarily used on matrices, it holds in a general ring or in an Ab-category. The Woodbury matrix identity allows cheap computation ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, below ...

  7. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    Schur decomposition. In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily similar to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix.

  8. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Conjugate transpose. In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of being , for real numbers and ). There are several notations, such as or , [1] , [2] or (often in physics) .

  9. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    Symplectic matrix. In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition. (1) where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix. This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p -adic numbers, and ...