Search results
Results from the WOW.Com Content Network
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
A property of entropy is that it is maximized when all the messages in the message space are equiprobable p(x) = 1/n; i.e., most unpredictable, in which case H(X) = log n. The special case of information entropy for a random variable with two outcomes is the binary entropy function, usually taken to the logarithmic base 2, thus having the ...
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.
(This formula is sometimes called the Hartley function.) This is the maximum possible rate of information that can be transmitted with that alphabet. (The logarithm should be taken to a base appropriate for the unit of measurement in use.) The absolute rate is equal to the actual rate if the source is memoryless and has a uniform distribution.
Next, use t to refer to the next period for which data is not yet available; again the autoregressive equation is used to make the forecast, with one difference: the value of X one period prior to the one now being forecast is not known, so its expected value—the predicted value arising from the previous forecasting step—is used instead.
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean.