enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branching factor - Wikipedia

    en.wikipedia.org/wiki/Branching_factor

    The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm. The average branching factor can be quickly calculated as the number of non-root nodes (the size of the tree, minus one; or the number of edges) divided by the number of non-leaf nodes (the number of nodes with ...

  3. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  4. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    There is a polynomial-time algorithm that approximates the minimum Steiner tree to within a factor of ⁡ +; [11] however, approximating within a factor / is NP-hard. [12] For the restricted case of Steiner Tree problem with distances 1 and 2, a 1.25-approximation algorithm is known. [ 13 ]

  5. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m.

  6. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  7. Factor graph - Wikipedia

    en.wikipedia.org/wiki/Factor_graph

    with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Barnes–Hut simulation - Wikipedia

    en.wikipedia.org/wiki/Barnes–Hut_simulation

    A 100-body simulation with the Barnes–Hut tree visually as blue boxes. The Barnes–Hut simulation (named after Josh Barnes and Piet Hut) is an approximation algorithm for performing an N-body simulation. It is notable for having order O(n log n) compared to a direct-sum algorithm which would be O(n 2). [1]