enow.com Web Search

  1. Ads

    related to: pythagorean theorem in hyperbolic geometry problems and answers

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  4. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    In Euclidean geometry, the triangle postulate states that the sum of the angles of a triangle is two right angles. This postulate is equivalent to the parallel postulate. [1] In the presence of the other axioms of Euclidean geometry, the following statements are equivalent: [2] Triangle postulate: The sum of the angles of a triangle is two ...

  5. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  6. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Hyperbolic functions in Euclidean geometry: The unit circle is parameterized by (cos t, sin t) whereas the equilateral hyperbola is parameterized by (cosh t, sinh t). Gyrotrigonometry: A form of trigonometry used in the gyrovector space approach to hyperbolic geometry, with applications to special relativity and quantum computation.

  7. IM 67118 - Wikipedia

    en.wikipedia.org/wiki/IM_67118

    IM 67118, also known as Db 2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal. In the last part of the text, the solution is proved correct using the Pythagorean theorem. The steps of the solution are believed ...

  8. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.

  9. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  1. Ads

    related to: pythagorean theorem in hyperbolic geometry problems and answers