enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.

  3. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  4. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    The better the quicker the algorithm converges. Could be 0 for first call. d Depth to loop for. An iterative deepening depth-first search could be done by calling MTDF() multiple times with incrementing d and providing the best previous result in f. [5] AlphaBetaWithMemory is a variation of Alpha Beta Search that caches previous results.

  5. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  6. Fringe search - Wikipedia

    en.wikipedia.org/wiki/Fringe_search

    In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path

  7. Principal variation search - Wikipedia

    en.wikipedia.org/wiki/Principal_variation_search

    In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.

  8. Optimal solutions for the Rubik's Cube - Wikipedia

    en.wikipedia.org/wiki/Optimal_solutions_for_the...

    IDA* is a depth-first search that looks for increasingly longer solutions in a series of iterations, using a lower-bound heuristic to prune branches once a lower bound on their length exceeds the current iterations bound. It works roughly as follows. First he identified a number of subproblems that are small enough to be solved optimally. He used:

  9. Aspiration window - Wikipedia

    en.wikipedia.org/wiki/Aspiration_window

    However, due to search instability, the score may not always be in the window range. This may lead to a costly re-search that can penalize performance. [2] Despite this, popular engines such as Stockfish still use aspiration windows. [3] The guess that aspiration windows use is usually supplied by the last iteration of iterative deepening. [4]