Ad
related to: high harmonic spectroscopy
Search results
Results from the WOW.Com Content Network
High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. [10] High harmonics are often generated with pulse durations shorter than that of the driving laser. [11] This is due to the nonlinearity of the generation process, phase matching and ...
High harmonic generation (HHG) is a nonlinear process where intense laser radiation is converted from one fixed frequency to high harmonics of that frequency by ionization and recollision of an electron. It was first observed in 1987 by McPherson et al. who successfully generated harmonic emission up to the 17th order at 248 nm in neon gas. [3]
The energy of this transition corresponds to 17th harmonic with 800 nm excitation wavelength. Similarly, in Indium, there exists a strong transition 4d 10 5s 2 → 4d 9 5s 2 5p at 19.92 eV with a high gf value of 1.11. [10] The energy of this transition corresponds to 13th harmonic with 800 nm excitation wavelength.
The first nonlinear optical effect to be predicted was two-photon absorption, by Maria Goeppert Mayer for her PhD in 1931, but it remained an unexplored theoretical curiosity until 1961 and the almost simultaneous observation of two-photon absorption at Bell Labs [4] and the discovery of second-harmonic generation by Peter Franken et al. at University of Michigan, both shortly after the ...
Second-harmonic generation was first demonstrated by Peter Franken, A. E. Hill, C. W. Peters, and G. Weinreich at the University of Michigan, Ann Arbor, in 1961. [9] The demonstration was made possible by the invention of the laser, which created the required high-intensity coherent light. They focused a ruby laser with a wavelength of 694 nm ...
EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms. The main uses of extreme ultraviolet radiation are photoelectron spectroscopy, solar imaging, and lithography.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
High harmonic generation in krypton.This technology is one of the most used techniques to generate attosecond bursts of light. Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10 −18 s) photon pulses are used to unravel dynamical processes in matter with ...
Ad
related to: high harmonic spectroscopy