Search results
Results from the WOW.Com Content Network
The Schwarzschild radius of an object is proportional to its mass. Accordingly, the Sun has a Schwarzschild radius of approximately 3.0 km (1.9 mi), [8] whereas Earth's is approximately 9 mm (0.35 in) [8] and the Moon's is approximately 0.1 mm (0.0039 in).
For example, the radius of the Sun is approximately 700 000 km, while its Schwarzschild radius is only 3 km. The singularity at r = r s divides the Schwarzschild coordinates in two disconnected patches. The exterior Schwarzschild solution with r > r s is the one that is related to
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a
The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the Sun, this radius is approximately 3 kilometers (1.9 miles); for Earth, it is
For example, the Schwarzschild radius of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s r {\textstyle {\frac {r_{\text{s}}}{r}}} is roughly 4 ...
In the Schwarzschild metric, free-falling objects can be in circular orbits if the orbital radius is larger than (the radius of the photon sphere). The formula for a clock at rest is given above; the formula below gives the general relativistic time dilation for a clock in a circular orbit: [11] [12]
For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by combining these two.
Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.