Search results
Results from the WOW.Com Content Network
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...
The degree Celsius (°C) can refer to a specific temperature on the Celsius scale as well as a unit to indicate a temperature interval (a difference between two temperatures). From 1744 until 1954, 0 °C was defined as the freezing point of water and 100 °C was defined as the boiling point of water, both at a pressure of one standard atmosphere.
For an exact conversion between degrees Fahrenheit and Celsius, and kelvins of a specific temperature point, the following formulas can be applied. Here, f is the value in degrees Fahrenheit, c the value in degrees Celsius, and k the value in kelvins: f °F to c °C: c = f − 32 / 1.8 c °C to f °F: f = c × 1.8 + 32
The Rankine scale is used in engineering systems where heat computations are done using degrees Fahrenheit. [3] The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4] [5]
According to energy conservation and energy being a state function that does not change over a full cycle, the work from a heat engine over a full cycle is equal to the net heat, i.e. the sum of the heat put into the system at high temperature, q H > 0, and the waste heat given off at the low temperature, q C < 0.
He set as 0 on his scale "the heat of air in winter at which water begins to freeze" (Calor aeris hyberni ubi aqua incipit gelu rigescere), reminiscent of the standard of the modern Celsius scale (i.e. 0 °N = 0 °C), but he has no single second reference point; he does give the "heat at which water begins to boil" as 33, but this is not a ...
The centigrade heat unit (CHU) is the amount of heat required to raise the temperature of one pound (0.45 kg) of water by one Celsius degree. It is equal to 1.8 Btu or 1,899 joules. [26] In 1974, this unit was "still sometimes used" in the United Kingdom as an alternative to Btu. [27]
Temperatures measured with equipment calibrated per ITS-90 may be expressed using any temperature scale such as Celsius, Kelvin, Fahrenheit, or Rankine. For example, a temperature can be measured using equipment calibrated to the kelvin-based ITS-90 standard, and that value may then be converted to, and expressed as, a value on the Fahrenheit ...