enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    In other words, the function sine is differentiable at 0, and its derivative is 1. Proof: From the previous inequalities, we have, for small angles sin ⁡ θ < θ < tan ⁡ θ {\displaystyle \sin \theta <\theta <\tan \theta } ,

  3. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The angle between the horizontal line and the shown diagonal is ⁠ 1 / 2 ⁠ (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 / 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin ⁠ 1 / 2 ⁠ (a + b) and cos ⁠ 1 / 2 ⁠ (a + b) are the ratios of the actual distances to ...

  6. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    By the standard version of Rolle's theorem, for every integer k from 1 to n, there exists a c k in the open interval (a k, b k) such that f ′(c k) = 0. Hence, the first derivative satisfies the assumptions on the n − 1 closed intervals [c 1, c 2], …, [c n − 1, c n].

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  8. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    In other words, the value of the constant function, y, will not change as the value of x increases or decreases. At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.

  9. Lemniscate elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_elliptic_functions

    7.2.3 First proof: comparison with the derivative of the arctangent. 7.2.4 Second proof: integral formation and area subtraction. ... for each n from N to 0 do