Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The remainder, as defined above, is called the least positive remainder or simply the remainder. [2] The integer a is either a multiple of d, or lies in the interval between consecutive multiples of d, namely, q⋅d and (q + 1)d (for positive q). In some occasions, it is convenient to carry out the division so that a is as close to an integral ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
compare two doubles, -1 on NaN dconst_0 0e 0000 1110 → 0.0 push the constant 0.0 (a double) onto the stack dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack ddiv 6f 0110 1111 value1, value2 → result divide two doubles dload 18 0001 1000 1: index → value load a double value from a local variable #index: dload_0 26
The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1. First, initialize the result to 1 and preserve the value of b in the variable x: (=).
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
As in all division problems, a number called the dividend is divided by another, called the divisor. The answer to the problem would be the quotient, and in the case of Euclidean division, the remainder would be included as well. Using short division, arbitrarily large dividends can be handled. [1]
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.