enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear model, it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.

  3. Bohr model of the chemical bond - Wikipedia

    en.wikipedia.org/wiki/Bohr_model_of_the_chemical...

    The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [ 2 ] Thus, according to this model, the methane molecule is a regular tetrahedron , in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen.

  4. Bohr equation - Wikipedia

    en.wikipedia.org/wiki/Bohr_equation

    The Bohr equation helps us find the amount of any expired gas, CO 2, N 2, O 2, etc. In this case we will focus on CO 2 . Defining F e as the fraction of CO 2 in the average expired breath, F A as the fraction of CO 2 in the perfused alveolar volume, and F d as the CO 2 makeup of the unperfused (and thus 'dead') region of the lung;

  5. Niels Bohr - Wikipedia

    en.wikipedia.org/wiki/Niels_Bohr

    Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research.

  6. Bohr radius - Wikipedia

    en.wikipedia.org/wiki/Bohr_radius

    The Bohr radius (⁠ ⁠) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]

  7. Rydberg constant - Wikipedia

    en.wikipedia.org/wiki/Rydberg_constant

    The last expression in the first equation shows that the wavelength of light needed to ionize a hydrogen atom is 4π/α times the Bohr radius of the atom. The second equation is relevant because its value is the coefficient for the energy of the atomic orbitals of a hydrogen atom: E n = − h c R ∞ / n 2 {\displaystyle E_{n}=-hcR_{\infty }/n ...

  8. Atomic units - Wikipedia

    en.wikipedia.org/wiki/Atomic_units

    They noted that the unit of length in this system is the radius of the first Bohr orbit and their velocity is the electron velocity in Bohr's model of the first orbit. In 1959, Shull and Hall [ 4 ] advocated atomic units based on Hartree's model but again chose to use ⁠ ℏ {\displaystyle \hbar } ⁠ as the defining unit.

  9. Bohr magneton - Wikipedia

    en.wikipedia.org/wiki/Bohr_magneton

    In the Bohr model of the atom, for an electron that is in the orbit of lowest energy, its orbital angular momentum has magnitude equal to the reduced Planck constant, denoted ħ. The Bohr magneton is the magnitude of the magnetic dipole moment of an electron orbiting an atom with this angular momentum. [14]