enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.

  3. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/wiki/Continuous_or_discrete...

    In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    For example, if X and Y are uncorrelated and the weight of X is two times the weight of Y, then the weight of the variance of X will be four times the weight of the variance of Y. The expression above can be extended to a weighted sum of multiple variables:

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.

  6. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.

  7. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5]: 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of .

  8. Discrete uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Discrete_uniform_distribution

    In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...

  9. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.