enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Albright–Goldman oxidation - Wikipedia

    en.wikipedia.org/wiki/Albright–Goldman_oxidation

    The following figure shows the reaction mechanism: [2] Reaktionsmechanismus Albright-Goldman-Oxidation. First, dimethyl sulfoxide (1) reacts with acetic anhydride to form a sulfonium ion. It reacts with the primary alcohol in an addition reaction. Furthermore, acetic acid is cleaved, so that intermediate 2 is formed. The latter reacts upon ...

  3. Meyer–Schuster rearrangement - Wikipedia

    en.wikipedia.org/wiki/Meyer–Schuster_rearrangement

    The reaction mechanism [5] begins with the protonation of the alcohol which leaves in an E1 reaction to form the allene from the alkyne. Attack of a water molecule on the carbocation and deprotonation is followed by tautomerization to give the α,β-unsaturated carbonyl compound. Edens et al. have investigated the reaction mechanism. [6]

  4. Cativa process - Wikipedia

    en.wikipedia.org/wiki/Cativa_process

    The active catalyst species (1) is regenerated by the reductive elimination of acetyl iodide from (4), a de-insertion reaction. [ 1 ] : 94–105 The acetyl iodide is hydrolysed to produce the acetic acid product, in the process generating hydroiodic acid which is in turn used to convert the starting material (methanol) to the methyl iodide used ...

  5. Knorr pyrrole synthesis - Wikipedia

    en.wikipedia.org/wiki/Knorr_pyrrole_synthesis

    The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis

  6. Mitsunobu reaction - Wikipedia

    en.wikipedia.org/wiki/Mitsunobu_reaction

    The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.

  7. Thioacetic acid - Wikipedia

    en.wikipedia.org/wiki/Thioacetic_acid

    Thioacetic acid is an organosulfur compound with the molecular formula CH 3 C(O)SH. It is a thioic acid: the sulfur analogue of acetic acid (CH 3 C(O)OH), as implied by the thio-prefix. It is a yellow liquid with a strong thiol-like odor. It is used in organic synthesis for the introduction of thiol groups (−SH) in molecules. [4]

  8. Pharmacology of ethanol - Wikipedia

    en.wikipedia.org/wiki/Pharmacology_of_ethanol

    The reaction uses NAD + to convert the ethanol into acetaldehyde (a toxic carcinogen). The enzyme acetaldehyde dehydrogenase (aldehyde dehydrogenase 2 family ALDH2, EC 1.2.1.3) then converts the acetaldehyde into the non-toxic acetate ion (commonly found in acetic acid or vinegar). [4] [6] This ion is in turn is broken down into carbon dioxide ...

  9. Prins reaction - Wikipedia

    en.wikipedia.org/wiki/Prins_reaction

    With water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1,3-diol (3). When water is absent, the cationic intermediate loses a proton to give an allylic alcohol (4). With an excess of formaldehyde and a low reaction temperature the reaction product is a dioxane (5).