Search results
Results from the WOW.Com Content Network
Φ v is the luminous flux, in lumens; Φ e,λ is the spectral radiant flux, in watts per nanometre; y (λ), also known as V(λ), is the luminosity function, dimensionless; λ is the wavelength, in nanometres. Formally, the integral is the inner product of the luminosity function with the spectral power distribution. [2]
In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area.
Bottom: Field line through a curved surface, showing the setup of the unit normal and surface element to calculate flux. To calculate the flux of a vector field F (red arrows) through a surface S the surface is divided into small patches dS. The flux through each patch is equal to the normal (perpendicular) component of the field, the dot ...
The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.
To calculate the flux density in janskys, the total power detected (in watts) is divided by the receiver collecting area (in square meters), and then divided by the detector bandwidth (in hertz). The flux density of astronomical sources is many orders of magnitude below 1 W·m −2 ·Hz −1 , so the result is multiplied by 10 26 to get a more ...
In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.
The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).
In photometry, luminous flux or luminous power [citation needed] is the measure of the perceived power of light. It differs from radiant flux , the measure of the total power of electromagnetic radiation (including infrared , ultraviolet , and visible light), in that luminous flux is adjusted to reflect the varying sensitivity of the human eye ...