enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  4. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.

  5. Hillel Furstenberg - Wikipedia

    en.wikipedia.org/wiki/Hillel_Furstenberg

    Furstenberg gained attention at an early stage in his career for producing an innovative topological proof of the infinitude of prime numbers in 1955. In a series of articles beginning in 1963 with A Poisson Formula for Semi-Simple Lie Groups , he continued to establish himself as a ground-breaking thinker.

  6. Category:Prime numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Prime_numbers

    Formula for primes; Fortunate number; Freshman's dream; Furstenberg's proof of the infinitude of primes; G. Gaussian moat; Generation of primes; Goldbach's comet; I.

  7. Primorial prime - Wikipedia

    en.wikipedia.org/wiki/Primorial_prime

    As of December 2024, the largest known prime of the form p n # + 1 is 7351117# + 1 (n = 498,865) with 3,191,401 digits, also found by the PrimeGrid project. Euclid's proof of the infinitude of the prime numbers is commonly misinterpreted as defining the primorial primes, in the following manner: [2]

  8. ‘Girl math,’ the TikTok trend where young women justify their ...

    www.aol.com/finance/girl-math-tiktok-trend-where...

    ‘Girl math,’ the TikTok trend where young women justify their spending, isn’t a lifestyle or a delusion—it’s proof that Gen Z is starting to believe ‘money isn’t real’ Paige Hagy ...

  9. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.